

RFID TRANSPONDER TECHNOLOGY

DOC. 115-R9

TR/TRW SERIAL TYPE UNIQUE-Q5-T5577

TRW-BOX

TRW-PCB

TRW-USBN

TRW-USBN-POCKET

TRW-LAN

1.0 FEATURES AND SPECIFICATIONS

1.0 FEATURES AND SPECIFICATIONS

The TRW is a Front Side Serial Tag Reader/Writer with built-in Antenna.

INTERFACE OPTIONS:

TTL - RS232 - RS485 - USB - LAN

TRANSPONDERS SUPPORTED:

UNIQUE - Q5 - T5577

WORKING METHODS:

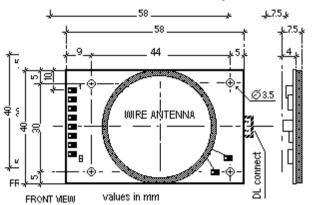
SHORT FRAME: 5 bytes HEX, the UNIQUE FORMAT.LONG FRAME: 17 bytes HEX, for general R/W purpose.

An useful **READ PART1** command permit to read the SERIAL NUMBER in PAGE1 of the Q5 and T5577 tags.

Can operate in AOR MODE (Answer On Request with PASSWORD).

2.0 VERSIONS

Reader Only models
TR-TTL-SS/SH-5
TR-232-SS/SH-12
RS232 interface
TR-485-SS/SH-12
RS485 interface
TR-USB-SS/SH-5
TR-LAN-SS/SH-5
TR-LAN-SS/SH-


The Reader Only models perform only the read of the SHORT FRAME, 5bytes UNIQUE code.

Glossary: **SS/QS**= Polling mode **SH/QH**= Spontaneous mode **12/5**= Power supply

Interface: TTL 232 485 USB LAN Case= PCB/SHELL/ONDA/BOX/ POCKET

2.0 MOUNTING

DIMENSIONS PCB TTL-232-485(see also Par.6.0)

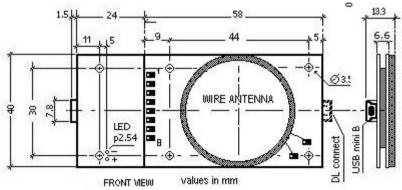
CONNECTION TRW-TTL

The on-board connector is an 8 pin .1" soldering type.

Pin Number	Description	n
1	+5VDC	
2	GND	
3	RX	TTL input
4	TX	TTL output
5	Spare	TTL i/o
6	MODE	TTL i/o
7	Out1 Op	en Collector output.
8	LED-OUT	TTL out internal $1k\Omega$

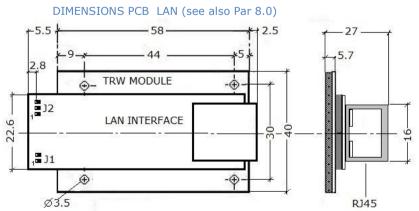
CONNECTION TRW-485

The on-board connector is an 8 pin .1" soldering type.


Pin Number	Descrip	tion
1	+12VD	
2	GND	
3	RS485-	A
4	RS485-	В
5	No Con	nect.
6	MODE	TTL input
7	Out1	Open Collector output.
8	LED-OL	JT TTL out internal 1 kΩ

CONNECTION TRW-232

The on-board connector is an 8 pin .1" soldering type.


Pin Number	Descript	ion
1	+12VDC	
2	GND	
3	RX	RS232 input
4	TX	RS232 output
5	Spare	RS232 input
6	MODE	TTL input
7	Out1	Open Collector output.
8	LED-OU	T TTL out internal $1k\Omega$

DIMENSIONS PCB USBN(see also Par.7.0)

Pin Number	Description
1	+5VDC from PC
2	D+
3	D-
4	GND
LED	TTL out (internal 1kΩ)

The FRW-USB module is powered by the 5VDC on the USB connector.

Values in mm

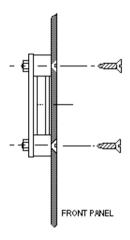
TOP VIEW

CONNECTION J1

The on-board connector is a 2 pin .1".

Pin Number	Description
1	+5VDC
2	GND

CONNECTION J2


Pin Number	Description	Description						
1	LED-OUT	TTL output trough internal $1k\Omega$						
2	GND	LED ground						
3	OUT1	Open collector output						

INSTALL

Due to the Radio Frequency emissions of the Reader Antenna is important to avoid the usage of metal panels in front, rear and lateral sides of the Reader.

Although the TRW provides an high resistance to EMC corruption, avoid to install it in high RF emission environments, the reading distance may result reduced.

In the spontaneous models (H) the RF field is always on, therefore using more than one antenna make attention to mount them at a distance of at least 1mt one another to avoid mutual noise.

3.0 PROTOCOL

The standard protocols for the TRW are:

-SS/QS Polling Suitable for application where the Host continuously polls the TRW.

-SH/QH Spontaneous Suitable for

Suitable for application point to point. The TRW transmits data only when a TAG is present. The HOST normally works in receive mode and can operate on other task in absence of TAG.

Not operable with RS485.

The protocol FORMAT is described below.

STX Start of string synchronization code.

LENGTH......Is the number of bytes following the LENGTH.

Example: STX-DEVICE-LENGTH-FUNCTION-DATA0....DATA11-BCC

The length is 14 DEC = 0D HEX.

FUNCTION /STATUS......Is the FUNCTION to be executed or the STATUS of an operation executed.

DATA0 to DATAn.....Are the data exchanged for a max of 17 bytes.

PASSW0 to PASSW3......Is the Password code.

Example: STX-DEVICE-LENGTH-STATUS-BCC → 02H-00H-02H-01H-BCC

where BCC= 01H.

The TAGs first delivery PASSWORD is always 00-00-00-00.

3.1 PROTOCOL S (Polling)

The TRW-QS operates in Polling mode. The HOST is Master.

Permit the use of the formats:

SHORT -- LONG

MODE input connector PIN6 OPEN.

3.1.1 COMMANDS from HOST to TRW

COMMAND #S: SET DEVICE VALID ONLY FOR TRW-485

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	DATA0	BCC
HEX VALUE	02H	FFH	03H	See below	00H to 7CH	00H-FFH

FUNCTION VALUE DESCRIPTION

SET DEVICE 61H The device number is set into the TR memory. Must be executed on any TR one-by-one

befor to install. In DATA0 insert the DEVICE NUMBER assigned to TR.

COMMAND#P: POLL DATA

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FRB	N-BLOCKS	BCC
HEX VALUE	02H	00H-7CH	04H	See below	01H	02H-06H-0FH	00H-FFH

FUNCTION VALUE DESCRIPTION

POLL DATA 04H The Tag data,if in valid format, are read in sequential order from the First Read

Block (FRB).

N-BLOCKS=F the TRW **automatically** detects valid formats and replay (REPLAY#0) data in:

SHORT FRAME MODE or LONG FRAME MODE.

N-BLOCKS=2 the TRW detect and send only **SHORT FRAME MODE** Tags. N-BLOCKS=6 the TRW detect and send only **LONG FRAME MODE** Tags.

COMMAND#RP1: READ PART1

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FRB	N-BLOCKS	BCC
HEX VALUE	02H	00H-7CH	04H	See below	00H	00H	00H-FFH

FUNCTION VALUE DESCRIPTION

READ PART1 7CH The Tag data, if in valid format, are read in sequential order from the PAGE1.

The replay lenght distinguish the tag between Q5 and T5577.

The UNIQUE tag gives an error replay.

COMMAND#0: WRITE DATA

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FWB	N-BLOCKS	PASSW (4 bytes)	DATAn (n=5-17)	BCC
HEX VALUE	02H	00H-7CH	0DH-19H	See below	01H	02H-06H	xx-xx-xxH	00H to FFH	00H-FFH

FUNCTION VALUE DESCRIPTION

WRITE DATA 22H DATAn are written into the TAG from the First Write Block (FWB) for N-BLOCKS.

In **SHORT FRAME MODE** DATAn is formed **by 5 Data Bytes** and FWB=1 N-BLOCKS=2. In **LONG FRAME MODE** DATAn is formed **by 17 Data Bytes** and FWB=1 N-BLOCKS=6. The PASSW is mandatory if the tag is configured to operate in PASSW or AOR mode.

COMMAND#0L: WRITE DATA LOCK

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FWB	N-BLOCKS	PASSW (4 bytes)	DATAn (n=5-17)	BCC
HEX VALUE	02H	00H-7CH	0DH-19H	See below	01H	02H-06H	xx-xx-xxH	00H to FFH	00H-FFH

FUNCTION VALUE DESCRIPTION

WRITE DATA 23H

The same as WRITE DATA with the difference that it LOCKS the written DATA in the BLOCKS 1 to 2 in **SHORT FRAME MODE** and BLOCKS 1 to 6 in **LONG FRAME MODE**. *IMPORTANT*: After this command the blocks are permanently locked. Any other write command send a REPLY#0 with the previous data.

COMMAND#1: CHANGE CONFIGURATION Q5

		<u> </u>		.					
DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FWB	N-BLOCKS	PASSW0	 PASSW3	FBR
HEX VALUE	02H	00H-7CH	0CH	See below	H00	01H	00H	00H	01H

LBR	A/P MODE	LOCK/HV	BCC
02H or 06H	00H-01H-02H	00H-01H-02H-03H	00H-FFH

FUNCTION VALUE DESCRIPTION

CHANGE CONF 80H

Write the CONFIGURATION WORD of the TAG. In **SHORT FRAME MODE** LBR has value as 2. In **LONG FRAME MODE** LBR has value as 6.

A/P MODE =00H (default value)

The tag is configured to operate without PASSW or AOR mode control.

A/P MODE=01H

The tag is configured to operate in AOR MODE.

In AOR MODE the tag need a **WRITE PASSWORD** command before.

IMPORTANT: In AOR MODE the TAG replay only if you send before a WAKE UP comman with the correct PASSWORD. All other commands can be executed till the TAG remains in the RF field.

A/P MODE=02H

The tag is configured to operate in PASSW MODE.

The WRITE DATA command requests the correct PASSW value.

In PASSW MODE the tag need a WRITE PASSWORD command before.

The PASSW0 to PASSW3 data field are mandatory if the tag is configured to operate in PASSW or AOR mode. Otherwise can be 00-00-00H.

LOCK/HV=00H (default value)

The data written in BLOCK0 are **not locked**. The tag operating frequency is set at **RF/64**. **LOCK/HV=02H**

The data written in BLOCKO are **not locked**. The tag operating frequency is set at **RF/32.**

LOCK/HV=01H

The data written in BLOCK0 are **locked**. The tag operating frequency is set at **RF/64. LOCK/HV=03H**

The data written in BLOCKO are locked. The tag operating frequency is set at RF/32.

IMPORTANT: After this commands the block 0 (CONFIGURATION) is permanently locked. Any other CHANGE CONFIGURATION command send a REPLY#1 but the previous data are not changed.

COMMAND#1BIS: CHANGE CONFIGURATION T5577

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FWB	N-BLOCKS	PASSW0	 PASSW3	FBR
HEX VALUE	02H	00H	0CH	See below	H00	01H	00H	00H	01H

LBR	AOR MODE	LOCK/ HV	BCC
02H or 06H	00H-01H-02H-	00H-01H-02H-03H	00H-FFH

FUNCTION VALUE DESCRIPTION

CHANGE CONF 88H Same as CHANGE CONFIGURATION Q5.

IMPORTANT: Don't configure a Q5 TAG using this command(88H), can be

damaged.

COMMAND#3: WRITE PASSWORD

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FWB	N-BLOCKS	O_PASSW0	 O_ PASSW3
HEX VALUE	02H	00H-7CH	0CH	See below	07H	01H	00H to FFH	00H to FFH

PASSW0	PASSW3	BCC
00H to FFH	00H to FFH	00H-FFH

FUNCTION VALUE DESCRIPTION

WRITE PASSW A0H The old password O_PASSW0 to O_PASSW3 written in the TAG is substituted by the new

password PASSW0 to PASSW3.(the password range is: 00-00-00 to FF-FF-FF).

WHEN TAG IS FIRST TIME DELIVERED HAS A PASSWORD: 00-00-00-00.

REMEMBER THE NEW PASSWORD WRITTEN IN THE TAG.

COMMAND#4: WAKE-UP

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	SPARE	SPARE	PASSW0	 PASSW3	BCC
HEX VALUE	02H	00H-7CH	08H	See below	00H	00H	00H to FFH	00H to FFH	00H-FFH

FUNCTION VALUE DESCRIPTION

WAKE UP 90H The PASSWORD is mandatory.

If operate in AOR MODE, the TAG inserted in field don't reply till receive a WAKE-UP

command with the correct PASSWORD.

COMMAND #5: **TURN ON/TURN OFF** the OUT1 transistor.

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	BCC
HEX VALUE	02H	00H-7CH	02H	See below	00H-FFH

FUNCTION VALUE DESCRIPTION

TURN-ON O2HThe HOST send this Command to TURN-ON (closed) the OUT1 open collector.

THE HOST send this Command to TURN-OFF (open) the OUT1 open collector.

COMMAND#V: READ VERSION

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	SPARE	SPARE	BCC
HEX VALUE	02H	00-7CH	04H	See below	00H	00H	00H-FFH

FUNCTION VALUE DESCRIPTION

READ VERSION 76H Read the actual firmware version of the module.

COMMAND #SC: SET STATUS CODE

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	CODE	BCC
HEX VALUE	02H	00H-7CH	03H	See below	04H or 44H	00H-FFH

FUNCTION VALUE DESCRIPTION

STATUS CODE 33H The HOST send this Command to set the STATUS CODE in the REPLY#0 as **04H**. The HOST send this Command to set the STATUS CODE in the REPLY#0 as **44H**.

To be used to mantain compatibility with old QS models, when requested.

3.1.2 STRINGS from TRW to HOST

IN RS485 MODE THE DEVICE BIT7 IS ALWAYS SET TO 1. So the address 00H is 80H and the 7CH is FCH.

REPLY#0: READ COMPLETE

IXEI EI # O I	11272	COI II EE				
DESCRIPTION	STX	DEVICE	LENGTH	STATUS	DATAn (n=5 or 17)	BCC
HEX VALUE	02H	00H-7CH	07H or 13H	See below	00H to FFH	00H-FFH

FUNCTION VALUE DESCRIPTION

READ COMPL 04H Data READ from the TAG are complete.

In SHORT FRAME MODE DATAn is formed by 5 Data Bytes. In LONG FRAME MODE DATAn is formed by 17 Data Bytes.

READ COMPL 44H ONLY VALID IN TR MODELS. Data READ from the TAG are complete.

In SHORT FRAME MODE DATAn is formed by 5 Data Bytes.

For compatibility with old models we have inserted a new command to set this code as 04H or 44H. See COMMAND#SC SET STATUS CODE.

REPLY#P1: PART1

DESCRIPTION	STX	DEVICE	LENGTH	STATUS	DATAn (n=5 or 8)	BCC
HEX VALUE	02H	00H-7CH	07H - 0AH	See below	00H to FFH	00H-FFH

FUNCTION VALUE DESCRIPTION

PART1 04H Data READ from PAGE1-UNIQUE IDENTIFIER BLOCK is complete.

If the length is **07H** the **Q5** was detected and the Data field is 5 bytes.

All the field can be used as UNIQUE identifier.

If the lenght is **OAH** the **T5577** was detected and the Data field is 8 bytes starting with EOH

(byte 7). Only the first 5 bytes can be used as UNIQUE identifier (BYTÉ0-1-2-3-4).

REPLY#V: VERSION

DESCRIPTION	STX	DEVICE	LENGTH	STATUS	VERSION (2 bytes)	BCC
HEX VALUE	02H	00-7CH	04H	04H	MMH-RRH	00H-FFH

FUNCTION DESCRIPTION

VERSION Show the actual version (MM=Model RR=Firmware release).

LENGTH STATUS

MM is:TTL/RS232/USB-SS=1BH TTL/RS232/USB-SH=1CH TTL/RS232/USB-QS=0BH

TTL/RS232/USB-QH=**0CH** RS485-SS=**1DH** RS485-QS=**0DH**

REPLY#1: STATUS

DESCRIPTION

HEX VALUE	02H	00H-7CH	02H	See below	00H-FFH					
FUNCTION		VALUE	DESCRI	PTION						
READ DATA EF	RR	01H		The data detected on the TAG are corrupted or incomplete or an high RF noise environment was detected.						
NO TAG		02H	The TRW	has detecte	d no tag pi	resent during a COMMAND or POLLING sequence.				
COMMAND OK		04H	The com	mand sent to	TRW has	been correctly executed.				
COMMAND ER	20H		The command sent to TRW was not executed because a parameter out of limit on the string or a data error was dectected on the TAG during a command execution							

BCC

In the case the TRW detects a BCC error on the received string, don't exec the Command and don't transmit any Reply.

3.1.3 DATA FLOW FRW-QS

The exchange of strings in a typical operation is described below.

The HOST is considered as Master, the TRW as Slave.

STX DEVICE

HOST TRW

NORMAL OPERATING MODE

CONFIGURE SEQUENCE

CHANGE CONFIG ===> (response time max 500ms) <=== if OK/ERROR **STATUS**

WRITE SEQUENCE

WRITE DATA ===> (response time max 500ms) <=== if ERROR **STATUS**

<=== if OK **READ**

READ SEQUENCE

POLL DATA ===> (poll time min 200ms in SHORT FRAME MODE) <=== if OK **READ**

(poll time min 300ms in LONG FRAME MODE)

<=== if ERROR **STATUS**

READ PART1 ===> (poll time min

READ PART1 (poll time min 1000ms) <=== if OK **PART1**

PASSW OPERATING MODE

INSERT THE NEW PASSWORD

WRITE PASSWORD ===> (response time max 500ms) <=== if OK/ERROR **STATUS**

SET CONFIGURATION in PASSW MODE

CHANGE CONFIG ===> (response time max 500ms) <=== if OK/ERROR **STATUS**

Now the TAG is configured in PASSW MODE. Any WRITE/CHANGE command will be executed only if the PASSW is correct.

AOR OPERATING MODE

INSERT THE NEW PASSWORD

WRITE PASSWORD ===> (response time max 500ms) <=== if OK/ERROR **STATUS**

SET CONFIGURATION in AOR MODE

CHANGE CONFIG ===> (response time max 500ms) <=== if OK/ERROR **STATUS**

Now the TAG is configured in AOR MODE, send the WAKE UP command as a polling:

WAKE-UP TAG with the correct PASSWORD

WAKE UP ===> (response time max 300ms) <=== if ERROR **STATUS**

<=== if OK READ COMPLETE

If **READ COMPLETE**, the tag has correctly accepted your **PASSWORD**. You can exec any command till the TAG remains in the RF Field:

CHANGE CONFIGURATION - WRITE PASSWORD - WRITE DATA.

3.2 PROTOCOL TRW-H (Spontaneous)

The TRW operates in spontaneous mode; when the TAG enters the RF field and is correctly read, directly transmits readable data to the host.

3.2.1 STRINGS from TRW to HOST

REPLY#0: READ COMPLETE

DESCRIPTION	STX	DEVICE	LENGTH	STATUS	DATAn (n=5 or 17)	BCC
HEX VALUE	02H	00H-7CH	07H or 13H	See below	00H to FFH	00H-FFH

FUNCTION VALUE DESCRIPTION

READ COMPL 04H Data READ from the TAG are complete.

In SHORT FRAME MODE DATAn is formed by 5 Data Bytes. In LONG FRAME MODE DATAn is formed by 17 Data Bytes.

READ COMPL 44H ONLY VALID IN TR MODELS. Data READ from the TAG are complete.

In SHORT FRAME MODE DATAn is formed by 5 Data Bytes.

REPLY#P1: PART1

DESCRIPTION	STX	DEVICE	LENGTH	STATUS	DATAn (n=5 or 8)	BCC
HEX VALUE	02H	00H-7CH	07H - 0AH	See below	00H to FFH	00H-FFH

FUNCTION VALUE DESCRIPTION

PART1 04H Data READ from PAGE1-UNIQUE IDENTIFIER BLOCK is complete.

If the lenght is **07H** the **Q5** was detected and the Data field is 5 bytes.

All the field can be used as UNIQUE identifier.

If the lenght is **OAH** the **T5577** was detected and the Data field is 8 bytes starting with EOH

the string or a data error was dectected on the TAG during a command execution

(byte 7). Only the first 5 bytes can be used as UNIQUE identifier (BYTE0-1-2-3-4).

REPLY#V: VERSION

DESCRIPTION	STX	STX DEVICE LENGTH		STATUS	VERSION (2 bytes)	BCC
HEX VALUE	02H	00-7CH	04H	04H	MMH-RRH	00H-FFH

FUNCTION DESCRIPTION

STX DEVICE

VERSION Show the actual version (MM=Model RR=Firmware release).

LENGTH STATUS

MM is:TTL/RS232/USB-SS=1BH TTL/RS232/USB-SH=1CH TTL/RS232/USB-QS=0BH

TTL/RS232/USB-QH=**0CH** RS485-SS=**1DH** RS485-QS=**0DH**

REPLY#1: STATUS

DESCRIPTION

HEX VALUE	02H	00H-7CH	02H	See below	00H-FFH			
FUNCTION		VALUE	DESCRI	PTION		·		
READ DATA ER	RR	01H	The data	detected on	the TAG a	ire corrupted or inc	omplete or an hi	gh RF noise
			environn	nent was det	ected.			
NO TAG		02H	The TRW	has detecte	ed no tag p	resent during a CO	MMAND or POLLI	ING sequence.
COMMAND OK		04H	The com	mand sent to	o TRW has	been correctly exe	cuted.	
COMMAND ER	R	20H	The com	mand sent to	o TRW was	not executed beca	use a parameter	out of limit on

BCC

7

3.2.2 STRINGS from HOST to TRW

COMMAND#0: WRITE DATA

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FWB	N-BLOCKS	PASSW (4 bytes)	DATAn (n=5-17)	BCC
HEX VALUE	02H	00H-7CH	0DH-19H	See below	01H	02H-06H	xx-xx-xxH	00H to FFH	00H-FFH

FUNCTION VALUE DESCRIPTION

WRITE DATA 22H DATAn are written into the TAG from the First Write Block (FWB) for N-BLOCKS.

In **SHORT FRAME MODE** DATAn is formed **by 5 Data Bytes** and FWB=1 N-BLOCKS=2. In **LONG FRAME MODE** DATAn is formed **by 17 Data Bytes** and FWB=1 N-BLOCKS=6. The PASSW is mandatory if the tag is configured to operate in PASSW or AOR mode.

COMMAND#0L: WRITE DATA LOCK

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FWB	N-BLOCKS	PASSW (4 bytes)	DATAn (n=5-17)	BCC
HEX VALUE	02H	00H-7CH	0DH-19H	See below	01H	02H-06H	xx-xx-xxH	00H to FFH	00H-FFH

FUNCTION VALUE DESCRIPTION

WRITE DATA 23H The same as WRITE DATA with the difference that it LOCKS the written DATA in the

BLOCKS 1 to 2 in **SHORT FRAME MODE** and BLOCKS 1 to 6 in **LONG FRAME MODE**. *IMPORTANT*: After this command the blocks are permanently locked. Any other write command send a REPLY#0 with the previous data.

COMMAND#1: CHANGE CONFIGURATION Q5

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FWB	N-BLOCKS	PASSW0	 PASSW3	FBR
HEX VALUE	02H	00H-7CH	0CH	See below	00H	01H	00H	00H	01H

LBR	A/P MODE	LOCK/HV	BCC
02H or 06H	00H-01H-02H	00H-01H-02H-03H	00H-FFH

FUNCTION VALUE DESCRIPTION

CHANGE CONF 80H Write the CONFIGURATION

Write the CONFIGURATION WORD of the TAG. In **SHORT FRAME MODE** LBR has value as 2. In **LONG FRAME MODE** LBR has value as 6.

A/P MODE =00H (default value)

The tag is configured to operate without PASSW or AOR mode control.

A/P MODE=01H

The tag is configured to operate in AOR MODE.

In AOR MODE the tag need a WRITE PASSWORD command before.

IMPORTANT: In AOR MODE the TAG replay only if you send before a WAKE UP comman with the correct PASSWORD. All other commands can be executed till the TAG remains in the RF field.

A/P MODE=02H

The tag is configured to operate in PASSW MODE.

The WRITE DATA command requests the correct PASSW value.

In PASSW MODE the tag need a **WRITE PASSWORD** command before.

The PASSW0 to PASSW $\overset{\circ}{3}$ data field are mandatory if the tag is configured to operate in PASSW or AOR mode. Otherwise can be 00-00-00H.

LOCK/HV=00H (default value)

The data written in BLOCK0 are **not locked**. The tag operating frequency is set at **RF/64. LOCK/HV=02H**

The data written in BLOCK0 are not locked. The tag operating frequency is set at RF/32.

LOCK/HV=01H

The data written in BLOCK0 are **locked**. The tag operating frequency is set at **RF/64. LOCK/HV=03H**

The data written in BLOCK0 are **locked**. The tag operating frequency is set at **RF/32. IMPORTANT**: After this commands the block 0 (CONFIGURATION) is permanently locked. Any other CHANGE CONFIGURATION command send a REPLY#1 but the previous data are not changed.

COMMAND#2: CHANGE CONFIGURATION T5577

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FWB	N-BLOCKS	PASSW0	 PASSW3	FBR	ı
HEX VALUE	02H	00H	0CH	See below	00H	01H	00H	00H	01H	ı

	LBR	AOR MODE	LOCK/ HV	BCC
Ī	02H or 06H	00H-01H-02H-	00H-01H-02H-03H	00H-FFH

FUNCTION VALUE DESCRIPTION

CHANGE CONF 88H Same as CHANGE CONFIGURATION Q5.

IMPORTANT: Don't configure a Q5 TAG using this command(88H), can be

damaged.

COMMAND#3: WRITE PASSWORD

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	FWB	N-BLOCKS	O_PASSW0	 O_ PASSW3
HEX VALUE	02H	00H-7CH	0CH	See below	07H	01H	00H to FFH	00H to FFH

PASSW0	PASSW3	BCC
00H to FFH	00H to FFH	00H-FFH

FUNCTION VALUE DESCRIPTION

WRITE PASSW A0H The old password O_PASSW0 to O_PASSW3 written in the TAG is substituted by the new

password PASSW0 to PASSW3. (the password range is: 00-00-00-00 to FF-FF-FF).

WHEN TAG IS FIRST TIME DELIVERED HAS A PASSWORD: 00-00-00-00.

REMEMBER THE NEW PASSWORD WRITTEN IN THE TAG.

COMMAND #5: **TURN ON/TURN OFF** the OUT1 transistor.

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	BCC
HEX VALUE	02H	00H-7CH	02H	See below	00H-FFH

FUNCTION VALUE DESCRIPTION

TURN-ON O2H TURN-OFFTHE HOST send this Command to TURN-ON (closed) the OUT1 open collector.

The HOST send this Command to TURN-OFF (open) the OUT1 open collector.

COMMAND#V: READ VERSION

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	SPARE	SPARE	BCC
HEX VALUE	02H	00-7CH	04H	See below	00H	00H	00H-FFH

FUNCTION VALUE DESCRIPTION

READ VERSION 76H Read the actual firmware version of the module.

COMMAND#4: ACK

DESCRIPTION	STX	DEVICE	LENGTH	FUNCTION	BCC
HEX VALUE	02H	00H	02H	See below	00H-FFH

FUNCTION VALUE DESCRIPTION

ACK 10H The HOST send this Command to the TRW to close any sequence.

After this command the TRW wait for a TAG extraction.

In the case the TRW detects a BCC error on the received string, don't exec the Command and don't transmit any Reply.

3.2.3 DATA FLOW FRW-QH

The REPLY#0 function as a **trigger** to start a COMMAND sequence.

When a REPLY#0 is fully received, the HOST can send a COMMAND in a **time window** of 250 ms.

Over this time, if no command has been sent, the TRW automatically repeat a READ DATA sequence till TAG extraction or a COMMAND receive, except for COMMAND#4.

If receive $\mbox{COMMAND} \# 4$ the TRW close the sequence and wait for a TAG extraction.

The **time window** on TRW is **reloaded** at any reply during a COMMAND sequence, except for critical errors.

A tipycal data flow, in spontaneous mode, is described below.

HOST TRW (initiator)

READ DATA sequence

Example: a TAG placed into RF field is correctly read <=== READ COMPLETE

Time window.....250ms

Example: in case of bad reading <=== READ DATA-ERROR or NO-TAG

Repeat READ DATA sequence....

COMMAND sequence in time window

NO COMMAND ===>

ACK ===>

WRITE DATA/CONF/PASSW===> (max response time 500ms)

Exit.... wait new time window.....

WRITE DATA/CONF/PASSW===> (max response time 500ms)

Exit....or continue with commands.....

READ PART1 ===> (poll time min 1000ms)

Repeat READ DATA sequence

Wait for TAG extraction....

<=== STATUS NO-TAG

Return to READ DATA sequence

<=== COMMAND OK
Time window reload.</pre>

<=== if OK Reply PART1

4.0 OUT1 AND LED

OUT1

The Out1 is an Open Collector output driving a max. load of 80 ma at 12VDC. It will goes ON/OFF with the COMMAND#5.

LED-OUT

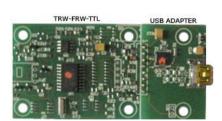
The LED-OUT is a TTL output, active high, with a 1 $k\Omega$ internal series resistor suitable to drive an external LED connected to GND.

It will turn ON when a TAG is moved in the RF-Field and is correctly read.

It will turn OFF when the TAG is removed by the RF-Field.

5.0 TRW-USBN-QS/QH-5 USB modules

Before any operation need to INSTALL the drivers.


- 1)Unzip the package "MCP2200 Windows Driver.zip"
- 2)Open the folder "Driver Installation Tool"
- 3)Open the folder "x64" for 64bit platforms or "x86" for 32bit platforms.
- 4)Launch the application "MCP2200DriverInstallationTool.exe".
- 5)Connect the TRW-USB device and follows the Microsoft instructions to complete the INSTALL on your platform.
- 6)The install assign a COM PORT to your device. Now you can communicate on this PORT.

To connect the TRW-USB module use a cable of the desired length mounting the connectors:

USB 2.0 TYPE A PLUG (side HOST) and USB2.0 MINI TYPE B PLUG (side FRW)

The available models for order are:

TRW-USB-QS/QH-5 (PCB version) and TRW-USB-QS/QH-5-POCKET TR-USB-SS/SH-5 (PCB version) and TR-USB-SS/SH-5-POCKET

TRW-USB-Version PCB

TRW-USB- Version POCKET

Dimension POCKET H 75 x L 115 x D 25 mm

6.0 TRW-QS/QH-12-ONDA or SHELL

These models are suggested only for READ purpose.

The use of **WRITE** commands has to be made by experienced operators that use a sure method of positioning and keeping the tag in the RF FIELD.

Otherwise the tag can be damaged.

Dimension SHELL	H 77 x L 112 x D 30 mm
Dimension ONDA	H 51 x L 115 x D 24 mm

CABLE PIN FUNCTION

COLOUR	232	485
WHITE	+12VDC	+12VDC
BROWN	GND	GND
YELLOW	RX 232	RS485-A
GREEN	TX 232	RS485-B
GREY	GND	GND

TR 232-S cable **D-TYPE S connector**

YELLOW(RX) PIN 3 GREEN(TX) PIN 2 GREY(GND) PIN 5

DURING A WRITE COMMAND THE TAG MUST BE MANTAINED IN THE PROPER RF FIELD TILL A REPLAY#1 OR STATUS ERROR STRING HAS BEEN RECEIVED.

ONDA

SHELL

MOVING THE TAG CAN CAUSE A NON RECOVERABLE FAILURE ON THE TAG ITSELF.

THIS MODEL PERMIT ONLY THE USE OF THE WRITE DATA COMMAND.

The module TRW is inserted into a BOX plastic enclosure.

Has the same electrical functions of the standard TRW-232.

A Cannon 9S connect all the signals. Connection with PC through a STRAIGHT CABLE.

The 12VDC power supply is connected by a standard 2,1mm plug-in:

Internal PIN +12V **External PIN GND**

The TRW is protected against polarity inversion.

MECHANICAL

Length	11.2cm
Width	6.8cm
Height	2.8cm
Weight	Typ 100g

ODEDATING

OFERATING	
Power Requirements	9 to 12 VDC not stabilized max. current 50mA
Serial interface Data=8 Parity=N Stop=1	Polling Mode
Speed	9600 baud
Read Distance (TAG in center of RF field)	CARD Q5 typ 50 mm

TRW-232-12-BOX

PIN	DESCRIPTION		
1			
2	TX 232		
3	RX 232		
4			
5	GND		
6	NOT CONNECTED		
7	NOT CONNECTED		
8	NOT CONNECTED		
9	NOT CONNECTED		

Cannon 9S Connector

8.0 FRW-LAN-MS/MH-5-PCB

This module operate in Transparent Mode.

All the commands and reply are executed on the FRW Reader module through a RJ45 port 10/100Mbps ETHERNET at the same mode as described in the above 3.0 Protocol paragraph.

Length	66mm
Width	40mm
Height	27mm

Power Requirements	5VDCstabilized max. current 160mA
Serial interface Data=8 Parity=N Stop=1	Polling/Spontaneous Mode
Speed	9600 baud
Read Distance (TAG in center of RF field)	CARD tip. 50 mm

See also par 2.0 MOUNTING for proper connections.

8.1 SETUP

Connect the module to an ETHERNET LAN.

The module has inside a web server.

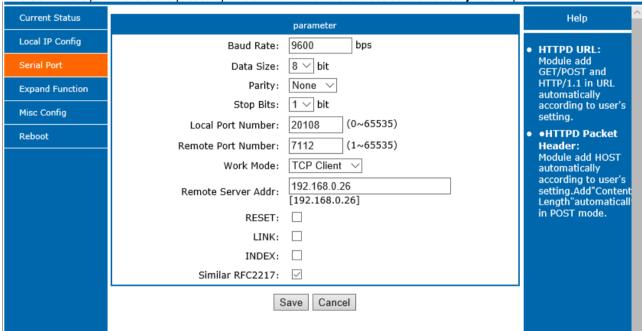
Using a web browser like Chrome or Internet Explorer type the following line: http://192.168.0.7

Will appear the login page containing the Default Login items:

User Name: admin Password: admin

http://192.168.0.7

Sicurezza di Windows					
Microsoft Edge					
Il server 192.168.0.7 sta richiedendo nome utente e password. Il server segnala che la richiesta proviene da FRW-LAN-MS-5. Avviso: il nome utente e la password verranno inviati tramite l'autenticazione di base su una connessione non sicura.					
Nome utente	Nome utente				
Password					
Memorizza credenziali					
OK Annulla					

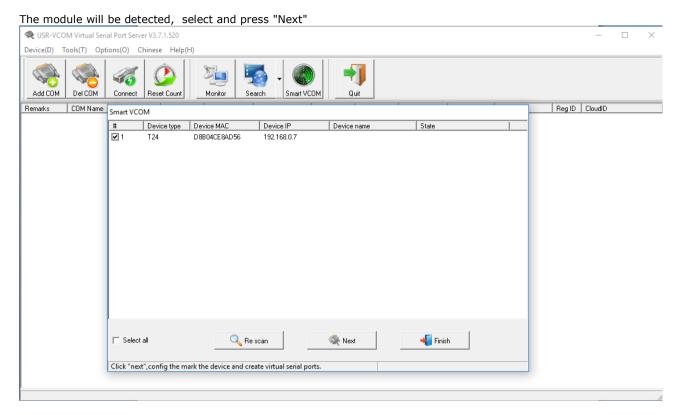

Press OK to enter the LOCAL IP CONFIG.

In the LOCAL IP CONFIG you can set your desired IP or choose DHCP mode

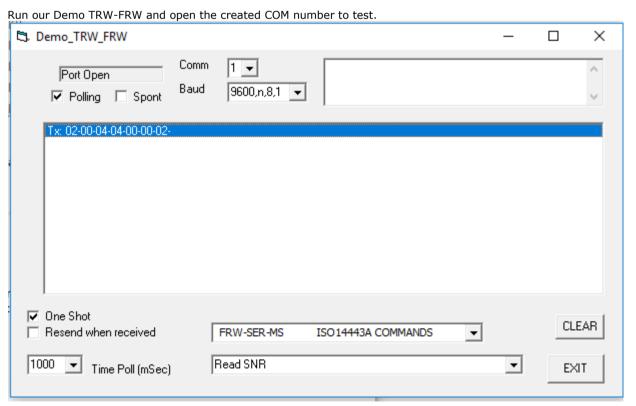
Current Status	DHCP	Help
Local IP Config	IP type: Static IP	• IP type:
Serial Port	Static IP: 192 . 168 . 0 . 7	StaticIP or DHCP • StaticIP:
Expand Function	Submask: 255 . 255 . 0	Module's static ip
Misc Config	Gateway: 192 · 168 · 0 · 1	Submask: usually
Reboot	DNS Server: 208 . 67 . 222 . 222	255.255.255.0 • Gateway:
	Save Cancel	Usually router's ip address
		DNS IP: DNS gateway or Router's IP

Insert your IP parameters and press SAVE.

The Serial Port parameters are preset by INOUT . The Baud Rate must be **mandatory** 9600 bps.


Open the REBOOT menu and press "Restart Module".

Now the module is ready to operate according to our protocol as described in our documentation. If you have an your SW to communicate with the FRW module just operate from this. Otherwise if you want make a TEST you can use our "Demo TRW-FRW" following the instruction in par 8.2 TEST.


8.2 TEST (optional)

To test the module using our Serial demo program TRW/FRW, we need to create a TCP IP virtual comm. Install the Virtual-Serial-Software(VSS.exe) program that you can find on our site to create a virtual comm. Run the program and press "Start VCOM" button.

The Virtual Com will be created

9.0 READER SPECIFICATIONS

OPERATING

Power Requirements max. Ripple 50mVp-p	12 VDC ± 10% at max 55mA
	5 VDC \pm 5% at max 50mA max ripple 10mV
Serial interface Data=8 Parity =N Stop=1	QS/SS: polling mode
	QH/SH: spontaneous mode
Baud Rate TTL - 232 - 485	9600 bits per second
Reading Distance (with TAG in center of RF field)	CARD: tip. 70mm
Writing Distance (with TAG in center of RF field)	CARD: tip. 60mm
IMPORTANT: Don't remove the TAG/CARD during the	
whole writing.	

MECHANICAL

Dimensions	(PCB)	40mm x 58mm x 10 mm
Weight	(PCB)	Max 60g

ENVIRONMENTAL

Temperature	Operating Storage	-10°C to 60°C -30°C to 70°C
Humidity	Operating	10% to 90% non condensing
	Storage	0% to 95% non condensing

INOUT RFID srl Via Milano,14/H 20064-Gorgonzola (Italy) Phone:+39 02.95138.139 Fax:+39 02.95.158.694 Email: info@inoutsrl.it Web: www.inoutsrl.it