

RFID TRANSPONDER TECHNOLOGY

DOC. 111-R9

TR-ISO/WIEGAND 125KHz READER

TR-ISO/WIE

TR-ISO/WIE-ONDA

Model K

TR-ISO/WIE-SHELL

1. FEATURES AND SPECIFICATIONS

- Easy switch of your actual magnetic into the new RFID technology.

The TR-ISO/WIE is a Front Side Tag Reader with **built-in Antenna**, operating with the following tags:

- UNIQUE	Read Or	ıly	Model S
- Q5	R/W	(BLOCK1-2 USER AREA formatted Unique)	Model S
- T5557/5567	R/W	(BLOCK 1-2 USER AREA formatted Unique)	Model S
The S model au	tomatically	recognize any UNIQUE Format.	

- TITAN R/W (use only BLOCK32)

- HITAG 1-2-S R/W (Read UID code) Model H The H model automatically recognize the Tag Type. For HITAG2 use the Default Key.

- Three Outputs (TAG-PRESENT, DATA and STROBE) can be paralleled with other devices (i.e. magnetic card readers).

TR-ISO Two formats available:

CONVERTED: 10 Hex digit (TAG UID) converted to 13 Decimal digit data out:

Manufacturer Code (3 Decimal digits always 000)

Serial Code (10 Decimal digits in the range 0 to 4.294.967.295) **TRASPARENT**: 10 Hex digit (TAG UID) converted to 10 Decimal couple of digits (00 to 15) data out. ISO-ABA-TRACK2.

TR-WIE Two formats available: WIEGAND 26 bit or WIEGAND 37 bit.

- Dual voltage available 5VDC (standard) or 12VDC.

- Available Case: PCB, SHELL, ONDA, TYPE H.

- DOUBLE ANTENNA version emulates the ISO Card reading in forward and reverse mode (Recognize ENTER/EXIT).

1.1 VERSIONS

TR-WIE26-ST-5-(Case) TR-WIE37-ST-5-(Case) TR-WIE26-ST-12-TYPE H TR-WIE37-ST-12-TYPE H

UNIQUE/Q5/T5577	TITAN	HITAG1/2/S
TR-ISO-SS-5-(Case)	TR-ISO-KS-5-(Case)	TR-ISO-HS-5-(Case)
TR-ISO-ST-5-(Case)	TR-ISO-KT-5-(Case)	TR-ISO-HT-5-(Case)
TR-ISO-SS-12-TYPE H	TR-WIE26-KT-5-(Case)	TR-WIE26-HT-5-(Case)
TR-ISO-ST-12-TYPE H	TR-WIE37-KT-5-(Case)	TR-WIE37-HT-5-(Case)
TR-ISO-SS-5-D		
TR-ISO-SS-5-E147		
TR-ISO-ST-5-E147		

Glossary

 TR= Transponder reader
 ISO=TTL ISO interface
 WIE26=WIEGAND26
 WIE37=WIEGAND37

 S= UNIQUE
 K=TITAN
 H=HITAG

 S= CONVERTED MODE
 T=TRANSPARENT MODE

 5/12= Power Supply

 D=Double Antenna
 Case=SHELL/ONDA/TYPE H
 E147=external antenna

2.0 ISO CONNECTION

The on-board connector is an 8 pin .1" (2.54mm) soldering type.

PIN		DESCRIPTION
1	+5VDC (suffix	x-5)
2	GND	
3	TAG Present	TTL output
4	Data	TTL output.
5	Strobe	TTL output.
6	No connect	TTL input.
7	Out1	Open Collector output.
8	LED-OUT	TTL output trough internal 1k?

2.0.1 WIEGAND CONNECTION

The on-board connector is an 8 pin .1" (2.54mm) soldering type.

PIN		DESCRIPTION
1	+5VDC (suffi	x-5)
2	GND	
3	No connect	
4	Data-1	TTL/TRISTATE output. Ext. pull up at 5V min. value 2 K
5	Data-0	TTL/TRISTATE output. Ext. pull up at 5V min. value 2 K
6	No connect	TTL input.
7	Out1	Open Collector output.
8	LED-OUT	TTL output trough internal 1k?

2.1 MOUNTING

Due to the Radio Frequency emissions of the Reader Antenna is important to avoid the usage of metal panels in front, rear and lateral sides of the Reader. Although the TR-ISO provides an high resistance to EMC corruption, avoid to install it in high RF emission environments,

Although the TR-ISO provides an high resistance to EMC corruption, avoid to install it in high RF emission environments the reading distance may result reduced.

2.2 ISO TIMING

2.2.1 TAG PRESENT

The Tag Present signal goes low when a TAG/CARD is moved in the RF-Field and data are correctly read.

Remains low for all data transmission. It will goes high at the end of data transmission.

2.2.2 DATA

The Data signal is valid while the strobe is low. The Data level high indicates a bit value of Zero.

2.2.3 STROBE

The strobe signal indicates when valid data are present.

It is recommended that Data be loaded with the falling edge (negative transition) of the Strobe.

2.2.4 LED-OUT

The LED-OUT is a TTL output, active high, with a 2.2k? internal series resistor suitable to drive an external LED connected to GND.

It will turn ON when a KEY/CARD is moved in the RF-Field and is correctly read.

It will turn OFF when the KEY/CARD is removed by the RF-Field.

2.2.5 OUT1

Г

The Out1 is an Open Collector output, active low, driving a max. load of 80 ma at 12VDC.

It will turn ON when a KEY/CARD is moved in the RF-Field and is correctly read.

It will turn OFF when the KEY/CARD is removed by the RF-Field.

3.0 FORMAT TR-ISO-SS/KS/HS CONVERTED

The data read from the TAG are **Hex-Dec math** converted into two blocks: Manufacturer Code (1 Hex = 3 Dec) and Serial Code (4 Hex = 10 Dec).

The TR-ISO-XS is formatted in ISO mode sending 3+10 decimal digits to the HOST, as described below.

DATA BITS			S	PARITY – PE	DESCRIP	TION
(first b	it output)	0 - 0 - 0 -	0 - 0 - 0 - 0 - 0		PREAMBLE	(9 zeroes)
1	1	0	1	0	START CODE	(B hex)
MC0-0	MC0-1	MC0-2	MC0-3	PE-MC0	1 st digit (msd)	MC CODE
MC1-0	MC1-1	MC1-2	MC1-3	PE-MC1	2nd digit	MC CODE
MC2-0	MC2-1	MC2-2	MC2-3	PE-MC2	3rd digit (Isd)	MC CODE
SC0-0	SC0-1	SC0-2	SC0-3	PE-SC0	1st digit (msd)	SC CODE
SC1-0	SC1-1	SC1-2	SC1-3	PE-SC1	2nd digit	SC CODE
SC2-0	SC2-1	SC2-2	SC2-3	PE-SC2	3rd digit	SC CODE
SC3-0	SC3-1	SC3-2	SC3-3	PE-SC3	4th digit	SC CODE
SC9-0	SC9-1	SC9-2	SC9-3	PE-SC9	10th digit (Isd)	SC CODE
1	1	1	1	1	END CODE	(F hex)
LCR0	LCR1	LCR2	LCR3	PE-LCR	LCR CODE	
0 - 0 - 0) - 0 - 0 - 0	- 0 - 0 - 0	(last bit output)		POSTAMBLE	(9 zeroes)

Glossary:

msd = Most significant digit

Isd = Least significant digit

MC = Manufacturer Code (3 decimal digits in the range 000 to 255)

SC = Serial Code (10 decimal digits in the range 0 to 4.295.000.000)

PE = Parity Even

PE-PARITY EVEN

Any digit have length 4 bit + 1 bit parity as descriptor below.

Bit 0	Bit 1	Bit 2	bit 3	PE	Digit
0	0	0	0	1	0
1	0	0	0	0	1
0	1	0	0	0	2
1	1	0	0	1	3
0	0	1	0	0	4
1	0	1	0	1	5
0	1	1	0	1	6
1	1	1	0	0	7
0	0	0	1	0	8
1	0	0	1	1	9
0	1	0	1	1	A
1	1	0	1	0	В
0	0	1	1	1	С
1	0	1	1	0	D
0	1	1	1	0	E
1	1	1	1	1	F

LCR

LCR is calculated as the XOR of any digit (excluded PE) from the **START CODE** to the **END CODE** (included). The PE of LCR is calculated at the same mode of the other digits. **Example** of stream with: **MC=012 SC=1234567890 LCR=6** PE (in parenthesis)

Preamble	START	MC '0'	MC '1'	MC '2'	SC '1'	SC '2'	SC '3'	SC '4'	SC '5'
00000000	D-1101(0)	- 0000(1)	-1000(0)	- 0100(0)	- 1000(0)	- 0100(0)	-1100(1)	- 0010(0)	-1010(1)
SC '6'	SC '7'	SC '8'	SC '9'	SC '10'	END	LCR	Postam	ble	
-0110(1) -	1110(0) -	0001(0)	- 1001(1)	-0000(1)	- 1111(1)	- 0110(1)	- 000000	0000	

3.1 FORMAT TR-ISO-ST/KT/HT TRANSPARENT

The data read from the TAG are transparently transmitted to the HOST. To be ISO formatted, the TAG data content is formatted in 20 decimal digits to the HOST, as described below.

Data from 0 Hex to 9 Hex are converted as 00 Dec to 09 Dec. Data from A Hex to F Hex are converted as 10 Dec to 15 Dec. The other terms are the same as previously described in par. 2.3.7.

Example:

If TAG contains an Hex code : 02 80 B6 83 4E The data will be so converted in Dec code: 00 02 08 00 11 06 08 03 04 14 The stream transmitted will be-

Preamble	START	'0'	' O'	' 0'	'2'	'0'	' 8'	' O'	'0'	'1'	'1'	' O'	
000000000	- 1101(0)	- 0000(1)	-0000(1)	- 0000(1)	- 0100(0)	- 0000(1)	-0001(0)	- 0000(1)	-0000(1)	-1000(0) -	- 1000(0) -	0000(1)	
'6'	' O'	<u>'8'</u>	' O'	121	' O'	111	<i>'</i> 1 <i>'</i>	111	END	ICD	Doctom	hla (20 hit)	
	•	•	0	5	0	-	•	-		LOK	FOStarr		

3.2 FORMAT WIEGAND26/37 PROTOCOL & TIMINGS

WIEGAND TIMING

The Wiegand Protocol is 26 bit mode so formatted: The three low significant bytes on the Unique format has sent to the Host Example: an UNIQUE CODE is : CO-80-52-35-1A Only the variable part 52-35-1A has sent to the HOST. The Wiegand format is:

E Bit0 Bit11 Bit12......Bit23 O

E= Parity even. If the number of ones in the Bits 1 to 11 is odd, then E=1, otherwise is 0. O= Parity Odd. If the number of ones in the Bits 12 to 23 is even, then O=1, otherwise is 0.

In the example the bit are so structured:

E	BO	B11	B12	B23	0
1	0101 0010 00)11	0101 0001 1	010	0

3.2.1 DATA-0 and DATA-1

The Data signal indicating the logic value 1 or 0.

3.3.2 | FD-OUT

The LED-OUT is a TTL output, active high, with a 2.2k? internal series resistor suitable to drive an external LED connected to GND. It will turn ON when a KEY/CARD is moved in the RF-Field and is correctly read.

It will turn OFF when the KEY/CARD is removed by the RF-Field.

3.2.3 OUT1

The Out1 is an Open Collector output, active low, driving a max. load of 80 ma at 12VDC. It will turn ON when a KEY/CARD is moved in the RF-Field and is correctly read.

It will turn OFF when the KEY/CARD is removed by the RF-Field.

4.0 TR-ISO-SS/T-5-D DOUBLE ANTENNA

Mechanical dimensions are the same as for the other TR-ISO models.

Is delivered with the FIRST ANTENNA mounted on the board and a SECOND ANTENNA in two versions:

- D SECOND ANTENNA as a spare part to be soldered to connector pin.

- DL SECOND ANTENNA connected with a cable to an on board two pole connector. The cable max length 1mt..

When a TAG/CARD has read from the FIRST antenna the DATA FORMAT is described in par 3.0.

When a TAG/CARD has read from the SECOND antenna the data are totally reversed, the first data out is the last bit (POSTAMBLE) of the DATA FORMAT described in par 3.0 for TR-ISO-SS and par 3.1 for TR-ISO-ST.

The use of this model is to emulate the forward /reverse action of the magnetic ISO card readers.

A time coverage and an internal comparison avoids the FIRST and SECOND antenna to be operated at the same time on the same card code.

5.0 TR-ISO/WIE-SS/ST-12-H MIDRANGE ANTENNA TYPE-H

The module TR is inserted into a plastic enclosure mounted on a Midrange Antenna plastic support.

Has the same electrical functions of the standard TR-ISO.

Is particularly hardened for use in high noise environments

A 6 wire 0,25mm cable connect all the signals. The cable length is 50cm.

The TR is protected against polarity inversion.

The antenna and the circuit are fully covered by resin to obtain a waterproof feature.

H MODEL		M	ECHANICAL			
Dimensions	Length	178	mm			
	Width	70	mm			
	Height	15	mm			
Weight		Тур	400g			
Material		PVC	GREY COLOR	CLASS V	/0	
		OP	ERATING			
D D '					401/00	00/ 11/1

i ower Requirements			
	current max. 100ma		
Reading Distance (with TAG in center of RF field)	CARD UNIQUE typ 230 mm		

	ENVIRONMENTAL	
Temperature	Operating	-15°C to 60°C
	Storage	-30°C to 70°C
Protection	Operating	Fully waterproof IP66
	Storage	idem

H MODEL		CABLE FUNCTION	
WIRE	COLOR	ISO	WIEGAND
1	WHITE	+12VDC	+12VDC
2	BROWN	GND	GND
3	YELLOW	TAG PRESENT	DATA-1
4	GREEN	DATA	DATA-0
5	GREY	CLOCK	GND
6	PINK	OUT1	OUT1

6.0 TR-ISO/WIE - ONDA/SHELL

The module TR-ISO/WIE is inserted into a plastic enclosure. Has the same electrical functions of the standard TR-ISO/WIE. A 6 wire 0,25mm cable connect all the signals. The cable length is 50cm. The TR is protected against polarity inversion.(not for the 5V model) The antenna and the circuit are fully covered by resin to obtain a waterproof feature.

Dimension SHELL	H 77 x L 112 x D 30 mm
Dimension ONDA	H 51 x L 115 x D 24 mm

CABLE FUNCTION

WIRE	COLOR	ISO	WIEGAND
1	WHITE	+5/12VDC	+5/12VDC
2	BROWN	GND	GND
3	YELLOW	TAG PRESENT	DATA-1
4	GREEN	DATA	DATA-0
5	GREY	GND	GND
6	PINK	OUT1	OUT1

7.0 TR-ISO/WIE-SS/T-5-E147 (14cm x 7cm) MIDRANGE EXTERNAL ANTENNA The module TR-ISO can be externally connected to one midrange antenna to obtain more reading distance.

E-147 Reading Distance (with TAG in center of RF field)	CARD UNIQUE typ 150mm			
The antenna is furnished with tinned copper wires for direct soldering on the TR-ISO module board.				
The antenna wires can be lengthened to a maximum of 2 meters.				

8.0 SPECIFICATIONS

8.0 SPECIFICATIONS				
OPERATING				
		TR5 Version: 5 VDC ? 5% at max.40mA		
Power Requirements				
		max. Ripple 10mVp-p		
Output Signal Level TTL Interface		Vol = 1 VDC max at 6mA		
		Voh = 3.5 VDC min at 6mA		
Speed ISO		600 bits per second		
Speed WIEGAND		500 bits per second		
Reading Distance (with TAG in center of RF field)		TAG typ 30mm		
		CARD typ 80mm		
	MECHANICA	AL		
Dimension electronic board		Height 40 x Length 58 x depth 7.5 mm		
Dimension SHELL		Height 77 x Length 112 x depth 30 mm		
Dimension ONDA		Height 51 x Length 115 x depth 24 mm		
ENVIRONMENTAL				
Temperature	Operating	-10′C to 50′C		
	Storage	-40'C to 80'C		
Humidity	Operating	10% to 90% non condensing		
	Storage	0% to 95% non condensing		

INOUT RFID srl Via Milano, 14/H 20064-Gorgonzola (Italy) Phone:+39 02.95138.139 Fax:+39 02.95.158.694 Email: info@inoutsrl.it Web: www.inoutsrl.it