RFID TRANSPONDER TECHNOLOGY DOC. 147-R4 # FRW 13.56MHz - ISO15693 READER/WRITER FRW-SHELL FRW-BOX FRW-PCB TRA FRANTIL FRW-ONDA FRW-USBN FRW-POCKET USBN #### 1.0 FEATURES AND SPECIFICATIONS The FRW is a Front Side Serial Tag Reader/Writer with built-in Antenna, with three interface options TTL-RS232-RS485. - ISO 15693 ICODE SII-SL2 - No Anticollision. - Mechanically compatible with the TR-SERIES modules. ### TRANSPONDERS SUPPORTED: - ICODE STANDARD ## 2.0 CONFIGURATIONS FRW-TTL-IS-5 TTL interface. Polling. FRW-TTL-IH-5 TTL interface. Spontaneous. FRW-232-IS-5 RS232 interface. Polling. FRW-232-IH-5 RS232 interface. Polling. 135 d. FRW-485-IS-12 PS485 interface. Polling. 135 d. FRW-485-IS-12 RS485 interface. Polling. 125 device address. FRW-USBN-BS-5 –(Case) USB interface. Polling. Powered by USB. FRW-USBN-BH-5 –(Case) USB interface. Spontaneous. Powered by USB. Glossary: FR/FRW=Model TTL= TTL interface 232=RS232 interface 485=RS485 interface USBN=USB interface I = TAG ICODE **S**= Polling **H**= Spontaneous 5/12=5V(standard)/12V power supply. 3.3V accepted only on TTL versions. Case = SHELL/ONDA/ POCKET USB ### **DIMENSION FRW-TTL/232/485** ### CONNECTION FRW-TTL The on-board connector is an 8 pin .1" soldering type. | Pin Number | Description | | |------------|--------------|--------------------------------| | 1 | +3.3 to +5VD | С | | 2 | GND | | | 3 | RX | TTL input | | 4 | TX | TTL output | | 5 | No Connect | | | 6 | No Connect | | | 7 | Out1 | Open Collector output. | | 8 | LED-OUT | TTL output trough internal 1k? | ## **CONNECTION FRW-485** The on-board connector is an 8 pin .1" soldering type. | Pin Number | Description | | |------------|-------------|--------------------------------| | 1 | +12VDC | | | 2 | GND | | | 3 | RS485-A | | | 4 | RS485-B | | | 5 | No Connect. | | | 6 | No Connect | | | 7 | Out1 | Open Collector output. | | 8 | LED-OUT | TTL output trough internal 1k? | ## **CONNECTION FRW-232** The on-board connector is an 8 pin .1" soldering type. | Pin Number | Description | | |------------|-------------|--------------------------------| | 1 | +5VDC | | | 2 | GND | | | 3 | RX | RS232 input | | 4 | TX | RS232 output | | 5 | No Connect | | | 6 | No Connect | | | 7 | Out1 | Open Collector output. | | 8 | LED-OUT | TTL output trough internal 1k? | ### **DIMENSIONS PCB USB ASSEMBLED** ### 2.3 INSTALL Due to the Radio Frequency emissions of the Reader Antenna is important to avoid the usage of metal panels in front, rear and lateral sides of the Reader. Although the FRW provides an high resistance to EMC corruption, avoid to install it in high RF emission environments, the reading distance may result reduced. #### 3.0 PROTOCOL The standard protocols for the TRW are: -1S Polling Suitable for application where the Host continuously polls the FRW. -IH Spontaneous Suitable for application point to point. The FRW transmits data only when a TAG is really present. The HOST normally works in receive mode and can operate on other task in absence of TAG. Not with RS485. The protocol FORMAT is described below. STX Start of string synchronization code. Is the number of bytes following the LENGTH. Example: STX-DEVICE-LENGTH-FUNCTION-DATA0....DATA11-BCC The length is 14 DEC = 0D HEX. FUNCTION /STATUS. Is the FUNCTION to be executed or the STATUS of an operation executed. **DATAO to DATAn**..... Are the data exchanged. where BCC= 01H. #### 3.1 PROTOCOL IS The structure of ICODE previews: GENERAL INFO SYSTEM containing an UID (8 bytes) E0-MANUFACTURER(04=PHILIPS)-TAG TYPE (01==SL2)-MANUFACTURER CODE (5 bytes). **DATA BLOCKS** User DATA is formed by 28 BLOCKS of 4 bytes each. The FRW-IS operates in Polling-Selecting mode. The HOST is Master. With any Command the RF Field has turned on and remain till the end of the sequence. #### 3.1.1 COMMANDS from HOST to FRW ## COMMAND #S: SET DEVICE VALID ONLY FOR TR-485 | DESCRIPTION | STX | DEVICE | LENGTH | FUNCTION | DATA0 | BCC | |-------------|-----|--------|--------|-----------|------------|---------| | HEX VALUE | 02H | FFH | 03H | See below | 00H to 7CH | 00H-FFH | FUNCTION VALUE DESCRIPTION SET DEVICE 61H The device number is set into the FR memory. Must be executed on any FR one-by-one befor to install. In DATAO insert the DEVICE NUMBER assigned to FR. #### COMMAND#P: POLL DATA | DESCRIPTION | STX | DEVICE | LENGTH | FUNCTION | BLOCK | N-BLOCKS | BCC | |-------------|-----|--------|--------|-----------|---------|-------------|---------| | HEX VALUE | 02H | 00-7CH | 04H | See below | 00H-1BH | 00H-01H-04H | 00H-FFH | FUNCTION VALUE DESCRIPTION GENERAL INFO 04H BLOCK=00H N-BLOCKS=0 Read for UID. If valid, replay with a READ UID. POLL BLOCK 04H BLOCK=00H to 1BH N-BLOCKS=1 or 4. Read 1 or 4 consecutive BLOCKS. If valid, replay with a READ BLOCK. Otherwise with STATUS. #### COMMAND#0: WRITE BLOCK | DESCRIPTION | STX | DEVICE | LENGTH | FUNCTION | FWB | N-BLOCKS | SPARE (4 bytes) | DATAn (4 -16) | BCC | |-------------|-----|--------|---------|-----------|---------|----------|-----------------|---------------|---------| | HEX VALUE | 02H | 00-7CH | 0CH-18H | See below | 00H-1BH | 01H-04H | 00-00-00-00H | 00H to FFH | 00H-FFH | FUNCTION VALUE DESCRIPTION WRITE BLOCK 22H Write command on the TAG. BLOCK=00 to 1B N-BLOCKS=1 or 4. Write 1 or 4 consecutive BLOCKS on the Tag. If valid, replay with a READ BLOCK. Otherwise with STATUS. #### COMMAND#L: LOCK BLOCK | DESCRIPTION | STX | DEVICE | LENGTH | FUNCTION | FWB | N-BLOCKS | BCC | |-------------|-----|--------|--------|-----------|---------|----------|---------| | HEX VALUE | 02H | 00-7CH | 04H | See below | 00H-1BH | 01H | 00H-FFH | FUNCTION VALUE DESCRIPTION LOCK BLOCK 25H Lock the block number written in FWB. If valid, replay with STATUS OK . Otherwise with STATUS ERROR. If the block was yet locked replay STATUS error. ## COMMAND #5: TURN ON/TURN OFF the OUT1 transistor | FUNCTION | | DE00DIDE1 | ~ | | | |-------------|-----|-----------|--------|-----------|---------| | HEX VALUE | 02H | 00H-7CH | 02H | See below | 00H-FFH | | DESCRIPTION | STX | DEVICE | LENGTH | FUNCTION | BCC | FUNCTION VALUE DESCRIPTION TURN-ON O2H The HOST send this Command to TURN-ON (closed) the OUT1 open collector. TURN-OFF O1H The HOST send this Command to TURN-OFF (open) the OUT1 open collector. COMMAND#V: READ VERSION | DESCRIPTION | STX | DEVICE | LENGTH | FUNCTION | BCC | |-------------|-----|--------|--------|-----------|---------| | HEX VALUE | 02H | 00-7CH | 03H | See below | 00H-FFH | FUNCTION VALUE DESCRIPTION **READ VERSION** 76H Read the actual firmware version of the module. #### 3.1.2 STRINGS from FRW to HOST IN RS485 MODE THE DEVICE BIT7 IS ALWAYS SET TO 1. So the address 00H is 80H and the 7CH is FCH. RFΔD RFPI Y#0: | DESCRIPTION | STX | DEVICE | LENGTH | STATUS | BLOCK | N-BLOCKS | DATAn (n=4-8-16) | BCC | |-------------|-----|---------|-------------|-----------|---------|-------------|------------------|---------| | HEX VALUE | 02H | 00H-7CH | 08H-0CH-14H | See below | 00H-3FH | 00H-01H-04H | 00H to FFH | 00H-FFH | FUNCTION VALUE DESCRIPTION **READ UID** Read the 8 bytes containing the UID 04H READ BLOCK Read a single BLOCK DATAO-1-2-3 (DATAn=4) or four consecutive BLOCKS DATAO to DATA15 (DATAn=16). 04H REPLY#V: VERSION | DESCRIPTION | STX | DEVICE | LENGTH | VERSION (2 bytes) | BCC | |-------------|-----|--------|--------|-------------------|---------| | HEX VALUE | 02H | 00-7CH | 03H | MMH-RRH | 00H-FFH | **FUNCTION** DESCRIPTION VERSION Show the actual version (MM=Model RR=Firmware release) For this model the value MM is: TTL/RS232-XS=33H TTL/RS232-XH=34H RS485-XS=35H. REPLY#1: **STATUS** | HEX VALUE | 02H | 00H-7CH | 02H | See below | 00H-FFH | |-------------|-----|---------|--------|-----------|---------| | DESCRIPTION | STX | DEVICE | LENGTH | STATUS | BCC | FUNCTION VALUE DESCRIPTION **READ DATA ERR** The data detected on the TAG are corrupted or incomplete. RF noise environment detected. 01H The FRW has detected a no valid tag present during a COMMAND or POLLING sequence. NO TAG 02H COMMAND ERR The command was not executed because a parameter out of limit on the command string or a data error was dectected. 20H COMMAND OK 04H The command has been correctly executed. In the case the FRW detects a BCC error on the received string, don't exec the Command and don't transmit any Reply. #### 3.1.3 DATA FLOW FRW-IS The exchange of strings in a typical operation is described below. The HOST is considered as Master, the FRW as Slave. | HOST | | | FRW-IS | | | |---------------------|------|--------------------------|--------|----------------|------------| | | | READ SEQUENCE | | | | | GENERAL INFO | ===> | (poll time min 30mS) | <=== | if OK | READ UID | | | | | <=== | if NOTAG/ERROR | STATUS | | POLL BLOCK | ===> | (poll time min 40mS) | <=== | if OK | READ BLOCK | | | | | <=== | if ERROR | STATUS | | | | WRITE SEQUENCE | | | | | WRITE BLOCK | ===> | (response time max 80mS) | <=== | if OK | STATUS | #### 3.2 PROTOCOL FRW-IH The FRW-IH operates in spontaneous mode. The GENERAL INFO is internally generated by the FRW module. ### 3.2.1 STRINGS from FRW to HOST REPLY#0: READ | DESCRIPTION | STX | DEVICE | LENGTH | STATUS | BLOCK | N-BLOCKS | DATAn (n=4-8-16) | BCC | |-------------|-----|--------|-------------|-----------|---------|-------------|------------------|---------| | HEX VALUE | 02H | 00H | 08H-0CH-14H | See below | 00H-3FH | 00H-01H-04H | 00H to FFH | 00H-FFH | FUNCTION VALUE DESCRIPTION **READ UID** 04H Read the 8 bytes containing the UID. Read a single BLOCK DATAO-1-2-3 (DATAn=4) or four consecutive BLOCKs DATAO to DATA15 (DATAn=16). **READ BLOCK** 04H REPLY#V: VERSION | DESCRIPTION | STX | DEVICE | LENGTH | VERSION (2 bytes) | BCC | |-------------|-----|--------|--------|-------------------|---------| | HEX VALUE | 02H | 00 | 03H | MMH-RRH | 00H-FFH | **FUNCTION** DESCRIPTION VERSION Show the actual version (MM=Model RR=Firmware release) For this model the value MM is: TTL/RS232-XS=33H TTL/RS232-XH=34H RS485-XS=35H. REPLY#1: **STATUS** | HEX VALUE | 02H | 00H | 02H | See below | 00H-FFH | | |-------------|-----|--------|--------|-----------|---------|--| | DESCRIPTION | STX | DEVICE | LENGTH | STATUS | BCC | | FUNCTION VALUE DESCRIPTION NO TAG The data detected on the TAG are corrupted or incomplete. RF noise environment detected. 02H READ DATA ERR The data detected on the TAG are corrupted or incomplete. RF noise environment detected. 01H **AUTH ERR** The command was not executed because a bad parameter in the Authentication Keys was detected. 10H COMMAND ERR The command was not executed because a parameter out of limit on the command string or a data error was dectected. 20H COMMAND OK 04H The command has been correctly executed. #### 3.2.2 STRINGS from HOST to FRW COMMAND#0: WRITE BLOCK | DESCRIPTION | STX | DEVICE | LENGTH | FUNCTION | FWB | N-BLOCKS | SPARE (4 bytes) | DATAn (4 -16) | BCC | |-------------|-----|--------|---------|-----------|---------|----------|-----------------|---------------|---------| | HEX VALUE | 02H | 00 | 0CH-18H | See below | 00H-1BH | 01H-04H | 00-00-00H | 00H to FFH | 00H-FFH | FUNCTION VALUE DESCRIPTION WRITE BLOCK 22H Write command on the TAG BLOCK=00 to 1B N-BLOCKS=1 or 4. Write 1 or 4 consecutive BLOCKS on the Tag. If valid, replay with a READ BLOCK. Otherwise with STATUS. COMMAND#4: ACK | DESCRIPTION | STX | DEVICE | LENGTH | FUNCTION | BCC | |-------------|-----|--------|--------|-----------|---------| | HEX VALUE | 02H | 00H | 02H | See below | 00H-FFH | FUNCTION VALUE DESCRIPTION ACK 10H The HOST send this Command to the FRW to close a sequence. After this command the FRW wait for a TAG extraction. COMMAND #5: TURN ON/TURN OFF the OUT1 transistor | DESCRIPTION | STX | DEVICE | LENGTH | FUNCTION | BCC | |-------------|-----|--------|--------|-----------|---------| | HEX VALUE | 02H | 00H | 02H | See below | 00H-FFH | FUNCTION VALUE DESCRIPTION TURN-ON 02H The HOST send this Command to TURN-ON (closed) the OUT1 open collector. TURN-OFF 01H The HOST send this Command to TURN-OFF (open) the OUT1 open collector. COMMAND#V: READ VERSION | DESCRIPTION | STX | DEVICE | LENGTH | FUNCTION | BCC | |-------------|-----|--------|--------|-----------|---------| | HEX VALUE | 02H | 00 | 03H | See below | 00H-FFH | FUNCTION VALUE DESCRIPTION **READ VERSION** 76H Read the actual firmware version of the module. In the case the FRW detects a BCC error on the received string, don't exec the Command and don't transmit any Reply. #### 3.2.3 DATA FLOW FRW-IH The FRW continously send a GENERAL INFO command, waiting for a valid READ BLOCK. When fully received, the HOST can send a COMMAND in a time window of 250 mS. Over this time, if no command has been sent, the FRW automatically repeat a GENERAL INFO sequence till TAG extraction or a COMMAND receive, except for COMMAND#4 ACK. **READ UID** <=== If receive COMMAND#4 ACK the FRW close the sequence and wait for a TAG extraction. The time window on FRW is reloaded at any reply during a COMMAND sequence, except for critical errors. A tipycal data flow, in spontaneous mode, is described below. HOST FRW READ DATA sequence Internal GENERAL INFO is generated and a TAG is correctly read Open time window.....250 mS..... COMMAND sequence in time window | NO COMMAND | ===> | | Repeat R | READ DATA | sequence | |-------------|------|---------------------------|----------|-----------|------------| | POLL BLOCK | ===> | (max response time 50mS) | <=== | if OK | READ BLOCK | | | | New time window | | | | | WRITE BLOCK | ===> | (max response time 80mS) | <=== | if OK | READ BLOCK | | | | | <=== | if ERROR | STATUS | | | | New time window | | | | | TURN-ON/OFF | ===> | (max response time 100mS) | <=== | if OK | STATUS | | | | New time window | | | | | ACK | ===> | | Wait for | TAG extra | ction | | | | | | | | #### 4.0 OUT1 The Out1 is an Open Collector output driving a max. load of 80 ma at 12VDC. It will goes ON/OFF with the COMMAND#S #### 4.1 LED-OUT The LED-OUT is a TTL output, active high, with a 1 k? internal series resistor suitable to drive an external LED connected to GND. In INTERNAL MODE: It will turn ON when a KEY/CARD is moved in the RF-Field and is correctly read. It will turn OFF when the KEY/CARD is removed by the RF-Field. ### 5.0 FRW-USBN-IS/IH-5 USB2.0 modules # Before any operation need to INSTALL the drivers. - 1)Unzip the package "MCP2200 Windows Driver.zip" - 2)Open the folder "Driver Installation Tool" 3)Open the folder "x64" for 64bit platforms or "x86" for 32bit platforms. - 4) Launch the application "MCP2200DriverInstallationTool.exe". - 5)Connect the FRW USB device and follows the Microsoft instructions to complete the INSTALL on your platform. - 6) The install assign a COM PORT to your device. Now you can communicate on this PORT. To connect the FRW-USB module use a standard cable of the desired length mounting the connectors: ## USB 2.0 TYPE A PLUG (side HOST) and USB2.0 MINI TYPE B PLUG (side FRW) The TRW-USB module is powered by the 5VDC on the USB connector. The available models for order are: FRW-USBN-IS/IH-5 (PCB version) and FRW-USBN-IS/IH-5-POCKET FRW-USBN-Version PCB FRW-USBN- Version POCKET #### 6.0 FRW-IS/IH-12-ONDA and FRW-IS/IH-12-SHELL | Dimension SHELL | H 77 x L 112 x D 30 mm | |-----------------|------------------------| | Dimension ONDA | H 51 x L 115 x D 24 mm | ## **CABLE PIN FUNCTION** | COLOUR | 232 | 485 | |--------|--------|---------| | WHITE | +12VDC | +12VDC | | BROWN | GND | GND | | YELLOW | RX 232 | RS485-A | | GREEN | TX 232 | RS485-B | | GREY | GND | GND | **EXAMPLE:** HOW TO CONNECT TO A 9 PIN D-TYPE S (Female) TR 232-S cable **D-TYPE S connector** YELLOW(RX) PIN 3 GREEN(TX) PIN 2 PIN 5 GREY(GND) ### IMPORTANT: DURING A WRITE COMMAND THE TAG MUST BE MANTAINED IN THE PROPER RF FIELD TILL A REPLAY#1 OR STATUS ERROR STRING HAS BEEN RECEIVED. ### 7.0 FRW-232-IS-12-BOX The module FRW is inserted into a BOX plastic enclosure. Has the same electrical functions of the standard FRW-232. A Cannon 9S connect all the signals. Connection with PC through a STRAIGHT CABLE. The 12VDC power supply is connected by a standard 2,1mm plug-in: Internal PIN +12V External PIN GND The TRW is protected against polarity inversion. | 1112011711110 | · ·- | |---------------|----------| | Length | 11.2cm | | Width | 6.8cm | | Height | 2.8cm | | Weight | Typ 100g | ## **OPERATING** | OFERATING | | |---|--| | Power Requirements | 9 to 12 VDC not stabilized max. current 50mA | | Serial interface Data=8 Parity=N Stop=1 | Polling Mode | | Speed | 9600 baud | | Read Distance (TAG in center of RF field) | CARD ICODE typ 50 mm | FRW-232-12-BOX | PIN | DESCRIPTION | | |-----|---------------|--| | 1 | | | | 2 | TX 232 | | | 3 | RX 232 | | | 4 | | | | 5 | GND | | | 6 | NOT CONNECTED | | | 7 | NOT CONNECTED | | | 8 | NOT CONNECTED | | | 9 | NOT CONNECTED | | **Cannon 9S Connector** #### 8.0 SPECIFICATIONS #### **OPERATING** | OFERATING | | | | |--|--|--|--| | Power Requirements max. Ripple 10mVp-p | 5 VDC ? 5% at max 90mA (peak) | | | | | 3.3 VDC ? 5% at max 90mA (peak) only for TTL version. | | | | Serial interface Data = 8bit Parity = none Stop = 1bit | IS: BiNARY asynchronous half duplex, polling-selecting protocol. | | | | | IH: BINARY asynchronous half duplex, spontaneous protocol. | | | | Baud Rate | 9600 bits per second | | | | Reading Distance (with TAG in center of RF field) | CARD: typ. 60mm | | | | Writing Distance (with TAG in center of RF field) | CARD: typ. 60mm | | | ### MECHANICAL PCB | Dimensions | 40mm x 58mm x 10 mm | |------------|---------------------| | Weight | Max 60g | ### ENVIRONMENTAL | Temperature | Operating | -10°C to 60°C | |-------------|-----------|---------------------------| | | Storage | -30°C to 70°C | | Humidity | Operating | 10% to 90% non condensing | | | Storage | 0% to 95% non condensing | INOUT RFID srl Via Milano,14/H 20064-Gorgonzola (Italy) **Phone:**+39 02.95138.139 **Fax:**+39 02.95.158.694 Email: <u>info@inoutsrl.it</u> Web: <u>www.inoutsrl.it</u>